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Abstract

Winter Storm Uri led to power outages in many Texas households in February 2021 and exposed
crucial deficits in the state’s electricity grid. We use Winter Storm Uri as a case study to answer
two related questions. First, does experiencing a natural disaster impacting electricity supply
affect willingness to pay (WTP) for policy interventions aimed at improving the reliability of the
electricity grid? Second, did the duration of the power outage experienced make individuals more
or less willing to pay to improve the reliability of the electricity supply? Given its public good
properties, reliable electricity supply in times of natural disasters will tend to be undersupplied
absent public policy interventions. We present a simple model of an individual’s expenditure
(or willingness to pay) function for varying levels of a public good. Using a choice experiment
embedded in a survey fielded after Winter Storm Uri, we evaluate respondents’ preferences for
potential policy interventions aimed at increasing the reliability of the Texas electric grid. We
estimate the expenditure function, namely the price respondents would pay for such interventions
to improve the level or the quality of the public good. We find that, naturally, individuals prefer
lower costs and fewer outages. More importantly, we are also able to account for variation in past
outage experience - which we characterize as the number of hours without power - and its impact
on WTP by exploiting the ‘as-if’ random assignment of outage duration during the storm. We
find that respondents who experienced longer-than-average outages revealed a WTP increase of
2 cents per kWh for winterizing the grid. Notably, this increase is significantly lower than the
4 to 4.4 cents more offered by those who had shorter or no outages, respectively. Additionally,
individuals experiencing longer outages are more likely to blame government authorities and
electricity producers for the grid failure during the Winter storm.

†Hobby School of Public Affairs. University of Houston.



1 Introduction

The reliability of an electricity system depends on the ability of electricity suppliers to meet demand,
which is not a problem under normal circumstances. Winter Storm Uri in February 2021, however,
exposed the vulnerability of the Texas grid to natural disasters and extreme weather events. Between
February 14-20, 2021, Texas experienced an unprecedented collapse of its electrical generation and
distribution system, causing more than 10 million Texans to lose power for multiple days amidst
freezing and below-freezing temperatures. The cold weather froze natural gas pipelines, which were
not weatherized to endure exceptionally low temperatures, reducing the supply of fuel to a large
proportion of electricity producers. The cold weather also forced some power plants out of the
system when demand was expected to peak as consumers braced for the extreme temperatures. At
its peak, the storm left 4.5 million homes and businesses without power, killed at least 151 people,
and cost at least $195 billion in material losses. Given that extreme weather events are only expected
to increase in frequency in Texas and elsewhere, such events will continue to threaten the reliable
supply of energy, resulting in disruptions and losses of human life and physical capital.

Addressing problems with the electricity grid to secure a more reliable energy supply demands
massive investments and regulatory changes that will ultimately raise the cost of electricity. Similarly
to other public goods, individuals – including consumers and producers – face incentives to free ride
on other market players’ contributions to make the electric grid more reliable, resulting in under-
investment and underprovision of the service (Pigou, 1947; Brainard and Dolbear, 1967; Williams,
1966; Stiglitz and Rosengard, 2015). In this paper, we examine individuals’ willingness to pay (WTP)
for policy interventions and investments aimed at enhancing the reliability of the electricity supply,
a public good.

To investigate the impact of natural disasters and extreme weather on the valuation of a resilient
electricity supply, we develop a theoretical framework connecting valuation of public goods, specifi-
cally electricity services, to WTP. We also develop a choice experiment embedded in an online survey
to understand public preferences regarding policy interventions to enhance the reliability of electricity
services in the face of severe weather events, and to examine respondents’ willingness to financially
support such interventions. While previous studies have used choice experiments to measure how
people value reliable electricity supply in hypothetical scenarios, our data come from respondents
who actually experienced an extreme weather event (i.e., Winter Storm Uri). This approach allows
us to better evaluate how experiences with natural disasters and long outages influence individuals’
willingness to pay for reliable electricity supply, as respondents do not have to “imagine” hypotheti-
cal unplanned outages. Our baseline findings show that people prioritize lower electricity costs and
reduced power outages as expected. Respondents are also willing to pay additional costs for policies
to safeguard the electricity grid from severe weather events, indicating a strong preference among
the public for a more resilient system.

Yet, while all respondents in Texas experienced the extreme weather event which caused widespread
outages of long duration, they were not all impacted identically. Households experienced outages of
different lengths, and some not at all, a fact we leverage as a natural experiment to explore how past
outage experience shapes WTP. We argue that experiencing prolonged blackouts negatively affects
individuals’ assessment of the ability of government and power suppliers to reliably deliver electric-
ity. This negative assessment, in turn, is associated with lower willingness to pay for investments in
resiliency. Experiencing shorter blackouts, by contrast, increases individuals’ valuation of the public
good and willingness to pay for policies aimed at making the electric grid more resilient to natural
disasters and mitigating expected losses. To evaluate the impact of past outage experience, our em-
pirical strategy exploits the as-if-random assignment of exposure to blackouts of different durations
during Winter Storm Uri. Our results show that households with longer-than-average power outages
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were willing to pay significantly less for reliable energy, compared to those who had shorter-than-
average outages or no outages at all. Furthermore, those who experienced longer outages were more
likely to hold the government and electricity producers responsible for the Texas power grid failure.
These findings provide a basis for reconciling conflicting results in the existing literature concerning
the influence of prior experience on the willingness to pay for reliable electricity and public goods in
general (e.g., Cohen et al. (2018); Baik et al. (2020); Taale and Kyeremeh (2016); Amador, González
and Ramos-Real (2013)).

The rest of our paper proceeds as follows. Section 2 briefly summarizes the literature on the
factors influencing WTP for reliable electricity. Section 3 presents a simple theoretical model for
determining the willingness to pay for public goods. Section 4 discusses the empirical strategy and
model specification, and Section 5 presents the baseline results of the analysis. In Section 6, we use
Winter Storm Uri as a natural experiment to estimate how the WTP of policies can be impacted
by an individual’s past experience with power outages. Section 7 discusses the findings and, finally,
Section 8 offers our concluding remarks.

2 Related Literature on WTP for Reliable Electricity

A large body of literature suggests that individuals’ WTP for public goods – whether national defense,
clean air, or reliable electricity – depend on various factors, including gender (López-Mosquera, 2016;
Adebo and Ajewole, 2012; Alozie and McNamara, 2010), income (Horowitz and McConnell, 2003;
Flores and Carson, 1997; Baumgärtner et al., 2017), education (Tianyu and Meng, 2020; Zorić and
Hrovatin, 2012; Taale and Kyeremeh, 2016), parental status (Olli, Grendstad and Wollebaek, 2001;
Wolters, 2014), and risk perception (Huang, 1993; Xu and Shan, 2018). The literature on electricity
reliability, which possesses public goods properties, finds that customers are willing to pay to reduce
the number and duration of power outages and to improve service quality (Goett, Hudson and Train,
2000). The WTP of electricity customers to avoid power outages, especially sudden or unplanned
ones, varies with their age, family size, season, location, type of housing, and day and time of the
week (Carlsson and Martinsson, 2008; Abdullah and Mariel, 2010; Taale and Kyeremeh, 2016; Kim,
Kim and Yoo, 2019; Hensher, Shore and Train, 2014; Ozbafli and Jenkins, 2016; Cohen et al., 2018).

Previous studies on WTP for reliable electricity service have documented that demographic char-
acteristics account for heterogeneity in WTP, likely due to how these factors relate to dependence and
demand for electricity. Outages of different lengths can also have adverse welfare effects depending
on an individual’s demographic profile, the season, time of the week, and housing type. For example,
WTP to avoid power outages is expected to be higher on weekends or weeknights than on weekdays
(Carlsson and Martinsson, 2008). People are likely to be home during the former and thus more
negatively affected by a power outage than if it happened during a weekday when they would likely
be at work or school. Similarly, Cohen et al. (2018) find that which season induces a higher WTP
depends on local temperature, particularly whether the country or region has hotter summers or
colder winters.

Other demographic factors are considered to capture the ability of respondents to pay more and,
therefore influence WTP. Taale and Kyeremeh (2016), for example, show that in Ghana, household
size was negatively associated with WTP. The authors suggest that larger households are likely to
have tighter budget constraints, not leaving much room for spending beyond basic needs and thus
lowering their WTP. By contrast, Abdullah and Mariel (2010) in their study of WTP for electricity
in Kisumu, Kenya find that larger households were more willing to pay for reliable service, which the
authors attribute to larger demand and reliance across household members.

Factors related to reliance on and demand for electricity also account for some heterogeneity
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in WTP for reliable electricity, with higher electricity usage associated with greater disutility from
power outages. In their study on Cyprus, Ozbafli and Jenkins (2016) posit that their finding that
higher-income households were willing to pay more in the summer was due to their dependence on
electricity for air conditioning at home and work. Taale and Kyeremeh (2016) suggest that education
positively influenced WTP because more educated individuals are likely to rely more on electricity
and own more electric appliances, resulting in greater welfare loss when the electricity goes out.

Beyond demographic factors, Abdullah and Mariel (2010) suggest that individuals’ trust and
confidence in service providers can also influence WTP. The authors find that older respondents were
less willing to pay, arguing this lower WTP stems from lower confidence in government among older
participants in their study area. Taale and Kyeremeh (2016) find that receiving prior notices of power
outages is associated positively with WTP, suggesting that enhanced communication increased trust
in the electricity service providers, thus influencing respondents’ WTP.

Previous experience with power outages is also linked to individuals’ WTP for reliable electricity,
though conclusions vary regarding whether and how past experience(s) impacts WTP. Cohen et al.
(2018) find that the WTP to avoid future power outages is lower among individuals who have ex-
perienced power outages lasting more than four hours. They argue that this is likely due to “the
readiness factor” making such individuals better equipped to endure future power outages (p. 39).
Thus, those who have experienced long-duration power outages may be willing to pay less because
they are better prepared to endure sustained power outages. Similarly, Ozbafli and Jenkins (2016)
argue that older respondents were not as negatively affected by power outages as younger respon-
dents because older respondents had more “experience coping with such inconveniences” compared
to younger respondents (p. 448).

On the other hand, other research shows that individuals who have experienced extended power
outages may be willing to pay more because of their familiarity with the consequences and their
desire to avoid large and long-duration power outages again. Taale and Kyeremeh (2016) find that
households that had experienced a power outage lasting several hours in the week preceding their
survey were willing to pay more for reliable electricity supply. Baik et al. (2020) argue that those who
have not experienced large outages of long duration will be unfamiliar with the consequences and,
given that uncertainty, may be willing to pay more to avoid such large long outages; however, the
authors do not find that past experience significantly shaped WTP. Furthermore, Amador, González
and Ramos-Real (2013) suggest that it is not only past experience but also perceived experience that
affects WTP. In their study on supplier choice in the Canary Islands, individuals who perceived
outages experienced in the previous year as having “significant consequences” were willing to pay
more to avoid future outages. Thus, individuals’ WTP depend not only on whether they have
experienced an outage but also on the intensity of that experience and the perceived consequences
of the previous outage(s).

3 Determining WTP for Public Goods

The Texas electricity system was designed to promote competition among producers and limited
government intervention. Producers are only paid when supplying electricity to the system, and
there are no requirements to keep backup capacity. To avoid federal regulation of the Texas electricity
grid, the Texas Interconnection of the Electric Reliability Council of Texas (ERCOT) is not linked
to the other major national grids. The reliability of the system, therefore, depends on the ability of
electricity providers to meet demand, which under normal circumstances is not a problem. However,
the system can be vulnerable to natural disasters and extreme weather events, as reflected in the
massive impact of Winter Storm Uri. The problem is not only limited to the impact of freezing
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temperatures on the supply of natural gas, which accounts for roughly 50% of the fuel used for
electricity production. Higher demand during heatwaves can also strain the ability of producers to
supply electricity, putting residents at risk of outages.

Addressing problems in the Texas electricity grid, including a reliable electricity supply, requires
massive investments and regulatory changes that will affect the cost of electricity. Moreover, the
reliability of the electric grid can be characterized as a public good that the current system does
not necessarily supply at the optimal level. Access to a reliable electricity supply is valuable for
individuals. However, it is unlikely that people will internalize the value of the reliability of the
system. Just like in the case of other public goods, as is well documented in the literature, neither
individuals nor private suppliers of the public good face incentives to contribute to its provision,
resulting in under-investment and under-supply (Pigou, 1947; Brainard and Dolbear, 1967; Williams,
1966; and Stiglitz and Rosengard, 2015).

To describe the underlying problem, this section presents a simple model of an individual’s spend-
ing behavior on a combination of private and public goods. The model depends on income, prices,
and the marginal rate of substitution between private goods and public goods. After characterizing
the expenditure function, we introduce a potential intervention aimed at increasing the level or the
quality of the public good. In theory, due to the typical properties of public goods, individuals
have no incentive to reveal their willingness to pay as they can free-ride on the contributions by other
actors with a higher valuation for the good. We then add to the basic model by incorporating individ-
uals’ past experience, in this case with outages, which shape individuals’ expectations of the public
authority’s ability to provide the proposed level of the public good. Importantly, this theoretical
framework helps reconcile results in the empirical literature, which suggest both positive or negative
associations between outage experience and willingness to pay for reliable access to electricity.

3.1 A Basic Setup

We present a modified theoretical framework originally suggested by Oh and Hong (2012), showing
the differential effect of outage experiences on an individual’s WTP for reliable electricity supply.
Consider the utility function of individual i over two types of goods, X and Y , as follows:

Ui = U (Xi, Y ) ,

where Xi = [xi1, ..., xiJ ] is a vector of J private goods for individual i, and Y is a public good.
The utility function U has regular properties, where Uz = ∂U/∂z > 0 and Uzz = ∂2U/∂z2 < 0, for
z ∈ {X, Y }, and ∂2U/∂X∂Y = ∂2U/∂Y ∂X > 0. Following Oh and Hong (2012), the public good
is not produced by private producers but by a collective entity, a public good provider, a public
provider, or public authority, such as the government.1

Let P be a vector of prices for private goods X, and Ii be the level of disposable income of the
individual i. The individual chooses the optimal level of X to maximize her utility function given
the levels of price P , income Ii, and public good Y .2 As a result, the indirect utility function can be
written as:

V (P, Y, Ii) = max
Xi

{Ui|PXi ≤ Ii} . (1)

We can derive the expenditure function from the indirect utility function (1). The expenditure E(·) is
represented as the minimum amount that individual i must spend on private goods in order to achieve

1We will use public good provider, public authority, and government interchangeably to describe an entity providing
public goods in society.

2Without loss of generality, we assume that the initial level of public good Y 0 has been paid by the public authority
to focus on willingness to pay for changes in the provision of the public good.
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a certain level of utility Ui, given P and Y . The private good expenditure function is presented as
follows:

E (P, Y, Ui) = min
Xi

{PXi|U (Xi, Y ) ≥ Ui} . (2)

Suppose that the public authority proposes a policy to raise the level (quality) of the public
good from Y 0 to Y 1, such that Y 1 > Y 0. We define the change in the level of the public good as
y = Y 1 − Y 0 > 0. Assuming that the additional level of public good will be paid by individuals and
that society prefers more of the public good, we can derive the willingness to pay for the extra level
of the public good for individual i:

WTP (yei ) = E
(
P, Y 0, U0

i

)
− E

(
P,

(
Y 1
i

)e
, U0

i

)
> 0, (3)

where yei = (Y 1
i )

e − Y0, U
0
i represents the initial utility level, and (Y 1

i )
e
the expected level of the

public good for individual i after the policy implementation, which is not necessarily identical across
individuals in society. Equation (3) suggests that individual i is willing to spend less on private
goods if she expects to obtain more (better) public good (Y 1

i )
e
, given the same level of utility.

Hence, the difference between the expenditure on private goods with the original level of public good
E (P, Y 0, U0

i ) and the expenditure with a higher expected level of public good E
(
P, (Y 1

i )
e
, U0

i

)
is

interpreted as the willingness to pay for the additional level of public good for the individual i, ceteris
paribus.

From Equation (3), if individual i’s expected level of public good (Y 1
i )

e
equals the level that the

public authority proposes (i.e., Y 1), then WTP (yei ) = WTP (y). In other words, society is willing
to contribute an amount to the public authority for providing a certain level of public good based on
their valuation of the public authority’s ability to supply that good. However, an individual would
be less willing to pay if she expects that the public authority will not be able to deliver the proposed
level or quality of the public good.

To develop the relationship between individuals’ valuation of public good providers and their
willingness to pay for public goods, we first linearize the private-good expenditure function of
Ei

(
P, (Y 1

i )
e
, U0

i

)
around the initial level of the public good Y 0 based on the first-order Taylor ap-

proximation:

E
(
P,

(
Y 1
i

)e
, U0

i

)
≈ E

(
P, Y 0, U0

i

)
+ EY

(
P, Y 0, U0

i

)
·
((
Y 1
i

)e − Y 0
)
, (4)

where EY (·) = ∂E (·) /∂Y < 0. Substituting (4) into (3), the linearized function of willingness to
pay for the public good can be presented as:

WTP (yei ) = −EY

(
P, Y 0, U0

i

)
· yei > 0. (5)

Equation (5) shows that individual i’s willingness to pay for the public good depends on the negative
value of the marginal expenditure on public good (−EY ) multiplied by the expected change in the
level of public good (yei ) for individual i.

3.2 The Role of Subjective Experience

To capture the effect of individuals’ past experience with outages, we assume, following Oh and Hong
(2012), that the expected change in the level of public good is formed based on the probability density
function (pdf) for a posteriori completion of the public good perceived by individual i, f (γ̂i, y

∗). Here
γ̂i is a function of an individual-specific determinant of the pdf γi, such as past undesirable experiences
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or knowledge, relative to the average level of experiences in the community γ̄, such that γ̂i = γi − γ̄.
Thus, we have:

yei =

∫ y

0

y∗f (γ̂i, y
∗) dy∗ = Γ (γ̂i) y, (6)

where Γ (γ̂i) ∈ [0, 1] represents the subjective valuation of the public good provider’s ability to produce
the public good as a function of the individual’s past relative experience γ̂i for individual i. We assume
that γ̂i represents the relative undesirable experiences of the public goods, such that dΓ/dγ̂i < 0, for
γ̂i > 0. This condition implies that if individual i previously experienced more undesirable state with
the public good relative to the community (i.e., γ̂i > 0), the individual will have a lower expected
level of public good after a policy intervention such that yei < y. On the other hand, if individual i’s
past experience was relatively better than the average in the community (i.e., γ̂i ≤ 0), the individual-
specific pdf f (γ̂i, y

∗) is normalized as 1/y∗, such that yei =
∫ y

0
y∗f (γ̂i, y

∗) dy∗ = y, for γ̂i ≤ 0. In
other words, the individual is confident that the level of public good after policy implementation will
meet the individual’s expected standard as they had better-than-average experience(s) in the past.
Finally, we obtain the following linear willingness to pay function for individual i by substituting (6)
into (5):

WTP (yei ) = −EY

(
P, Y 0, U0

i

)
Γ (γ̂i) y. (7)

According to Equation (7), we see that ∂WTP (yei ) /∂γ̂i < 0 for γ̂i > 0. In other words, given a
better-than-average level of past relative experience, individuals will be willing to pay the amount
that is equal to the level of the good proposed by the public authority, i.e., WTP (yei ) = WTP (y).
However, if an individual encountered more undesirable experiences relatively in the past, she would
have a lower valuation of the public authority (i.e. Γ (γ̂i) decreases) and, as a result, she would be
less willing to fund the public good project (i.e., WTP (yei ) decreases). In other words, Equation
(7) suggests that an individual’s willingness to pay for the proposed changes in the level (or quality)
of the public good is affected by their experience with the good and their perception of the public
agency’s ability to deliver the proposed level or quality of the public good.

4 Empirical Strategy

To assess individuals’ willingness to pay for reliable electricity, we fielded an online survey with
YouGov between May 13-24, 2021 – three months after the beginning of the winter storm. The
survey included a sample of 1,500 respondents representing the distribution of residents from across
the state of Texas. The survey asked Texans about their experiences during Winter Storm Uri, their
tolerance for power outages and higher prices, the importance of a secure and reliable electricity
supply, as well as their willingness to pay for the required policy interventions to make the grid more
resilient to the effects of severe weather events. Table 1 presents the descriptive statistics of the
relevant demographic characteristics.

Figure 1 presents a map of survey respondents’ average hours without power by ZIP codes in
Texas. The hour distribution does not appear to follow a spatial pattern or cluster in specific
regions. While the most impacted counties in terms of the average number of customers without
power were Throckmorton (93%), Brazoria (92%), and Wharton (90%), power outages occurred
statewide. In addition, power outages varied in length, hour by hour from February 10 to February
19, with February 16 the day when the highest number of customers were affected.
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Table 1: Descriptive Statistics for Full Sample

Count Mean Std. Dev.
Married 1500 .52 .49
Family income ($1,000s) 1340 77.11 77.89
Risk Aversion 1 1141 .27 .45
Risk Aversion 2 1499 .24 .43
Democrat 1500 .37 .48
Republican 1500 .22 .41
Female 1500 .56 .49
White 1500 .46 .49
Black 1500 .09 .29
Hispanic 1500 .37 .48
College degree 1500 .36 .48
Children under 18 1500 .27 .44
Liberal 1500 .31 .46
Conservative 1500 .30 .45

Figure 1: Geographical Distribution of Electricity Outages

4.1 Choice Experiment

Choice experiments (CE), which are used to elicit respondents’ preferences over multiple attributes
and levels of those attributes simultaneously, have become increasingly popular due to their realistic
representation of market and policy choices. Originally developed for marketing applications, choice
experiments have also been used in various valuation areas, including health, environment, and infras-
tructure. Additionally, CEs have been a widely used method for the purposes of studying residential
customers’ preferences over electricity supplier (Ozbafli and Jenkins, 2016; Amador, González and
Ramos-Real, 2013; Cai, Deilami and Train, 1998; Goett, 1998; Louviere, Hensher and Swait, 2000;
Revelt and Train, 1998). Another important advantage of this method for eliciting respondents’
valuations over alternative choices is the ability to assess preferences over values of the attributes
involving characteristics that pertain to resources or services rather than the overall values of the
resource or service (Hanley et al., 1998).

Table 2 shows attributes and corresponding levels for the conjoint analysis. Each respondent was
asked to make four sequential choices between two different policy profiles (Policy A or Policy B)
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with randomly generated attribute levels (see the example in Figure A1 in the Appendix). Each
profile featured three attributes: cost (additional expenditure), outage duration, and policy, with
randomly assigned attribute levels for each choice. Following previous studies (e.g. Abdullah and
Mariel, 2010; Carlsson and Martinsson, 2008; Morrison and Nalder, 2009; Ozbafli and Jenkins, 2016),
we characterized reliability as the duration of the outage. For the duration of the outage, there were
four attribute levels: (1) full service (no interruptions); (2) rolling blackouts or intermittent service
on and off for up to 2 hours ; (3) rolling blackouts or intermittent service on and off from 2 up to 12
hours ; and (4) power outage for more than 12 hours.

For policy attributes, we presented respondents with five different options, which included the
status quo - doing nothing or no new investment. The four policy proposals that respondents were
presented were based on policies to protect the Texas interconnection from the effects of future severe
weather that were widely discussed in the media and policy circles in the aftermath of Winter Storm
Uri. The four proposals were: (1) merging the Texas electrical grid with one of the two national grids ;
(2) requiring the winterization of the electricity system, including at gas wellheads and processing
plants ; (3) maintaining a minimum reserve capacity ; and (4) increasing the renewable energy supply.

Table 2: Descriptive Statistics for Conjoint Experiment

Occurrence Chosen Percent
No. No. Chosen %

Cost: Increase in price per kWh required for policy
a. No increase in price per kWh 2,358 1,448 61.41
b. 1 cent more per kWh (12%) 2,428 1,386 57.08
c. 2 cents more per kWh (23%) 2,397 1,270 52.98
d. 4 cents more per kWh (47%) 2,421 1,040 42.96
e. 6 cents more per kWh (70%) 2,396 856 35.73
Outage: Maximum length of outage in hours when electricity
demand exceeds capacity
a. Full service/no interruptions 3,013 2,077 68.93
b. Rolling blackouts for up to 2 hours 3,022 1,654 54.73
c. Rolling blackouts for

up to 12 hours 3,007 1,263 42.00
d. Power outage for

more than 12 hours 2,958 1,006 34.01
Policy: policy proposed to protect Texas from effects of severe weather
a. Do Nothing/no new investment 2,359 843 35.74
b. Merge the Texas grid with one

of the two national grids 2,378 1,193 50.17
c. Require winterization

/ weatherization of the
electricity system 2,434 1,430 58.75

d. Maintain a minimum reserve
capacity (backup power) 2,437 1,243 51.00

e. Increase the renewable
energy supply 2,392 1,291 54.00

Finally, we chose cost attribute levels based on the average cost of electricity in the state of Texas
in 2019. The levels of increase in cost per kWh were: (1) no increase in cost per kWh; (2) 1 cent
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more per kWh (12% increase over the average household electricity bill in 2019); (3) 2 cents more
per kWh (23% increase); (4) 4 cents more per kWh (47% increase); and (5) 6 cents more per kWh
(70% increase). Figure A1 in the appendix presents an example choice set from the conjoint choice
experiment included in this study.

4.2 Mixed Logit Model

To analyze the data, we follow the specification and estimation of the discrete choice models that have
been adopted to examine respondents’ choices among a fixed set of options, suggested by McFadden
(1973) random utility theory.3 In each conjoint experiment trial, respondent i makes a decision based
on J = 2 choices, four times (T = 4 experiments). As a result, the utility U derived from respondent
i’s choice of alternative (profile) j in an experiment t can be written as follows:

Uijt = xijtβi + ϵijt, (8)

where xijt is a vector of alternative-specific variables, and ϵijt is assumed to be distributed as iid
extreme value which is independent of βi (McFadden and Train, 2000). We apply a mixed logit
model, where the coefficient vector βi in equation (8), called random coefficients, are different across
respondents due to unobservable factors, such as tastes and preferences.4

The random parameters βi in the utility function (8) are assumed to be distributed as βi ∼
f (β, θ) , where θ is a vector of the parameters of the distribution of β. For example, if the random
coefficients βi are distributed as normal, that is, βi ∼ N (b,Σ) , where Σ is the variance-covariance
matrix, it implies that the random parameters βi are assumed to be conditionally drawn from the
density function N (b,Σ) (see Mehndiratta, 1996; Bolduc and Ben-AkiWand, 1996; Revelt and Train,
1998; Greene, 2011). Intuitively, if βi is specified to be non-random and identical for all respondents,
then βi = b for all respondents. On the other hand, in the mixed logit model, βi is treated as a
random parameter and is specified to be normally distributed across respondents.

Given the error term ϵijt is an iid extreme value and independent of βi, the conditional probability
that respondent i chooses j from a set of J alternatives in experiment t, given βi, is a standard logit
model:

Pijt|βi
= exp (xijtβi) /

J∑
k=1

exp (xiktβi) . (9)

As βi is a random coefficient distributed as f (β, θ) across respondent i, the choice probabilities are
the standard logistic probabilities integrated over the density f (β, θ):

Pijt =

∫
Pijt|βi

f (β, θ) dβ. (10)

Equation (10) represents the mixed logit model, where Pijt is defined as the probability of choosing
alternative j for respondent i in experiment t. Because there is no closed-form solution for the
integral, Equation (10) is approximated by maximum simulated likelihood where βi are randomly
drawn from the specified distribution.

3Random utility theory is based on the assumption that individuals make choices by assigning a utility value to
different options under consideration, and select the option that provides the highest utility. The choice, however,
includes a random component due to unobserved factors or lack of information, which makes the process probabilistic.

4See Train (2009) for the detailed discussion of the mixed logit model.
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5 Willingness to Pay - Baseline Results

Table 3 presents the results of the mixed logit model, which estimates respondents’ choices regarding
policy attributes related to costs, outage duration, and severe-weather-protecting policy options.5

Note that the baseline conditions for the choice attributes, the status quo, are: No increase in price
per kWh; Full service/no interruptions; and Do nothing/no new investment (Table 2). Consistent
with previous research in the literature, the costs measured in the mixed logit model are based on the
change in annual electricity expenditure of the respondents (in natural log).6 The significant negative
coefficients on the expenditure and outage attributes in the baseline model in Table 3 indicate that
respondents do not prefer increases in electricity expenditure and prefer full service to outages of
any duration.7 Unsurprisingly, these estimates suggest that respondents prefer lower spending on
electricity and shorter outages. Notably, however, respondents are willing to pay more to see policies
implemented to protect the grid from severe weather in the future. The significant positive coefficients
for the policy attributes reveal that respondents prefer to have better policies implemented to protect
the Texas electric grid over doing nothing (the status quo), if the cost and outage attributes remain
unchanged.

Figure 2 presents the relative importance of three attributes, which is calculated by taking the
difference between the largest and smallest coefficients for each attribute of the estimated mixed logit
model (see Table A2), divided by the sum of the ranges of the three attributes. Consistent with other
studies in the literature, we find that the duration of the outage proved to be the attribute with the
highest relative importance in the profiles, followed by cost and the proposed policy interventions.

5In Table A2 in the Appendix we present the estimated results based on a simple mixed logit choice model without
random parameter. In line with the results presented in Table 3, respondents, on average, dislike paying more for
electricity, as evidenced by the negative and significant coefficients for additional electricity expenditure, regardless of
their outage experience.

6Each respondent’s additional electricity expenditure is calculated by multiplying the predicted annual consumption
of electricity (ACE) (in kWh) by the cost per kWh required for the policy described in Table 2. The predicted ACE
is estimated using the 2015 Residential Energy Consumption Survey (RECS) data from the U.S. Energy Information
Administration (EIA). We first run a regression model of the ACE with the following demographic factors: household
income, age, employment status, education, number of household members aged 17 or younger, and homeowner-renter
status based on the EIA data. We then predict annual electricity consumption with the same set of demographic
factors in our sample. Figure A2 in the appendix reports the distribution of the reported ACE from the EIA data and
the predicted distribution in our sample. The Kolmogorov-Smirnov equality-of-distributions test shows that the largest
difference between the two distributions is 0.0316, with the approximate asymptotic p-value of 0.424. Both distributions
are not significantly different from each other, meaning that the predicted distribution of electricity expenditure is
similar to the actual distribution. Finally, we generate a variable called additional electricity expenditure by multiplying
ACE by the corresponding cost attributes in the conjoint experiment (see Table 2).

7The variable outage duration is specified in natural logarithmic form. The outage length in the conjoint analysis
has four attribute levels: full service (no interruptions), rolling blackouts or intermittent service on-and-off for up to 2
hours, rolling blackouts or intermittent service on and off from 2 up to 12 hours, and power outage for more than 12
hours. Here, the outage variable is defined as ln (outage duration + 1), using the upper bound of the attribute level.
For the first two attribute levels, we use 2 hours and 12 hours, respectively. Additionally, we restrict the maximum
length of the outage to 48 hours for the attribute level of more than 12 hours.
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Table 3: Mixed Logit Estimations on the Willingness to Pay - Baseline Model

Variable Coefficient Std. Err.
Change in electricity expenditure (in log) -0.4385*** 0.075

Derived standard deviations 0.5764 0.135
Hours of rolling blackouts/ intermittent service -1.2975*** 0.173

Derived standard deviations 1.6989 0.280
Policy response/ investment

Merge the Texas electrical grid
with one of the two national grids 1.3907*** 0.153
Require the winterization/
weatherization of the electricity system 2.1423*** 0.185
Maintain a minimum reserve capacity 1.5061*** 0.161
Increase the renewable energy supply 1.6823*** 0.167

Log simulated-likelihood -3351.3183
12,000

Notes: ∗ 10% significance level; ∗∗ 5% significance level; and ∗∗∗ 1%
significance level, two-tailed tests.
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Figure 2: Relative Importance between Outages, Cost and Policy (Baseline model)

One of the advantages of conjoint analysis is that we can quantify how much respondents are
willing to pay for different proposed policies based on the estimated coefficients in the mixed logit
regressions. According to Equation (8), the marginal willingness to pay (MWTP) for attribute k can
be presented as follows:

MWTPk =
∂U/∂xk

−∂U/∂p
=

βk

−βp

, (11)

where p is the price attribute, which in this case is the change in the amount that customers pay
for electricity per year (in log). Equation (11) suggests that the MWTP for a change in a specific
attribute k can be interpreted as the marginal rate of substitution (MRS) between the additional
electricity payments (i.e., p) and the amount expressed by the specific attribute (i.e., xk), holding
the utility level constant.

Figure 3(a) plots the estimated MWTP coefficients.8 Negative signs for the coefficients in the

8The estimated MWTP coefficients are presented in Table A3 in the Applendix.
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Sunny: Revise Fig. 2. Make a new one for the overall sample.

5.1 Marginal Willingness to Pay

One of the advantages of conjoint analysis is that we can quantify how much respondents are willing to pay for di↵erent
proposed policies based on the estimated coe�cients in the mixed logit regressions. According to equation (8), the
marginal willingness to pay (MWTP) for attribute k can be presented as follows:

MWTPk =
@U/@xk

�@U/@p
=

�k

��p
, (11)

where p is the price attribute, which in this case is the change in the amount customers pay on electricity per year (in
log). Equation (11) suggests that the MWTP for a change in a specific attribute k can be calculated as the marginal
rate of substitution (MRS) between the additional electricity payments (i.e., p) and the amount expressed by the
specific attribute (i.e., xk), holding the utility level constant.

Figure 3 plots the estimated MWTP coe�cients. Negative signs for the coe�cients in the first row of the figures
indicate that respondents - regardless of whether they experienced an outage or its duration - are willing to pay to
reduce outage duration. However, the MWTP among households that experienced a longer than average outage is lower
than for the two other groups. For the four policy proposals, the MWTP coe�cients imply that individuals are willing
to pay more on their annual electricity bills to see these proposals implemented. The estimated MWTP coe�cients
also reveal the important influence of respondents’ experience during Winter Storm Uri, namely whether and for how
long they lost power. Individuals who reported experiencing a longer than average power outage consistently revealed
lower MWTP than the other two groups.

Finally, Figure 4 plots the marginal willingness to pay for each of the four policy proposals.8 The figure graphs the
amount on average respondents would be willing to pay in kWh to implement the policies and reduce outage duration.
Technically speaking, we multiply the estimated MWTP for each of the four policy areas by the average total cost of
$106.69, which allows us to see the change in the amount respondents would be willing to pay on their electricity bills
annually.9 For example, on average, respondents are willing to pay $520.64 (i.e., MWTPweatherization ⇥ $106.69 =
4.88 ⇥ $106.69) more annually to perform the weatherization of the electricity system, compared to $409.30 more for

8To compute the additional payment for a specific policy per kWh instead of the total amount per year, we divide the annual additional
payment by the average annual consumption of electricity (ACE), that is, �k (��p)�1 P/ACE, where the amount of P = $106.69 and
ACE = 14979.44kWh represent the average additional electricity expenditure according to the conjoint experiment and the annual average
consumption of electricity, respectively. See Footnotes 9 for the further discussion on the MWTP calculation.

9Recall the marginal willingness to pay (equation (11)) is presented as follows: MWTPk = [@U/@xk] / [�@U/@p] = �k (��p)�1, where
p is defined as the additional electricity expenditure (in log) (see Footnote 6 for discussing the procedure of estimating the additional
electricity expenditure in detail.) The estimated MWTP coe�cients are presented in Table A8 in the appendix. Let’s define p as ln P ,
where P represents the additional electricity expenditure. We can compute the monetary value of willingness to pay for a specific proposed
policy k in a year as @P/@xk = �k (��p)�1 P .
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Figure 4: Estimated Marginal Willingness to Pay for Policies

increasing the renewable energy supply. Converting the price in terms of kilowatt per hour (kWh), respondents are
willing to pay about 3.47 cents more per kWh to see a policy implemented that requires the winterization of the
electricity system, compared to 2.73 cents for a policy of increasing the renewable energy supply.

Sunny: Need to revise the paragraph above. We need need to discuss Figure 4. I also need to discuss other val-
ues for Figure 4.

Sunny: WTP for Winterization: 4.8853 x 106.69 = 521.21. Therefore, per kWh, 521.21/14979.44 kWh =
3.47cents.

Sunny: WTP for Merge Grid: 3.1715 x 106.69 = 338.37. Therefore, per kWh, 338.37/14979.44 kWh = 2.25cents.

Sunny: WTP for Min Res capacity: 3.4346 x 106.69 = 366.44. Therefore, per kWh, 366.44/14979.44 kWh =
2.44cents.

Sunny: WTP for Renewable: 3.8364 x 106.69 = 409.31. Therefore, per kWh, 409.31/14979.44 kWh = 2.73cents.

Sunny: WTP for Blackout: theta x P x d(duration)/duration

Sunny: WTP for Blackout: 2.959 x 106.69 x 6 hours/6.544 hours = 289.45, where the average of ldur = 1.878734.
Therefore, exp(1.878734) = 6.5449908412 hours. Per kWh, 289.45/14979.44 kWh = 1.93cents for 6 hours.

Sunny: We can change the spider graph shows the blackout for 12 hours instead of 6 hours. We should either
make the plot for 6 hours or change the label from 6 hours to 12 hours. Either way would be fine.

6 Winter Storm Uri as a Natural Experiment

Sunny: Probably needs a new introduction here...

We use a quasi-natural experiment design based on the distribution of the length of power outages in Texas.
Blackouts left more than 4.5 million customers without power during winter storm Uri. According to the Electricity
Reliability Council of Texas (ERCOT), power outages occurred for several reasons, but mainly because power genera-
tors and other equipment could not withstand the cold weather, fuel limitations, and to a minor extent, forced outages
by transmission line disconnections. The blackouts exposed the inability of the electricity supply to meet the extreme
demand, which brought the electric grid within minutes of complete collapse.

While the most impacted counties in terms of an average number of customers without power were Throckmorton
(93%), Brazoria (92%), and Wharton (90%), power outages occurred statewide. In addition, power outages varied
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Pay (MWTP) coefficients

(b) Estimated MWTP based on cost per kHw 

Figure 3: Estimated Marginal Willingness to Pay for Policies

first row of the figures indicate that respondents are willing to pay to reduce outage duration. For
the four policy proposals, the significant MWTP coefficients imply that individuals are willing to
pay more on their annual electricity bills to see these proposals implemented. Figure 3(b) plots the
marginal willingness to pay for each of the four policy proposals in terms of price per kilowatts per
hour (kWh).9 For example, respondents are willing to pay about 3.47 cents more per kWh to see a
policy implemented that requires the winterization of the electricity system, compared to 2.73 cents
for a policy of increasing the renewable energy supply. Furthermore, respondents are willing to pay
about 2.44 cents more per kWh to maintain minimum reserve capacity and about 2.25 cents more
per kWh to merge grids. To prevent 12 hours of blackout, the willingness to pay is approximately
3.86 cents per kWh.

This analysis suggests that after Winter Storm Uri the typical individual in our sample prefers
lower costs and fewer outages, but is indeed willing to pay for policy interventions aimed at making
the grid more resilient and reducing power outages. However, we also argue that varying experiences
during the natural disaster are likely to have affected an individual’s willingness to pay for the public
good of reliable electricity. In the next section, we turn to assessing the role of subjective experience as
presented in Section 3.2 and specifically how individuals’ differential experiences with power outages
affect their WTP for regulatory changes to the Texas electricity grid to lower outages and mitigate
the impact of severe weather events on the supply of electricity.

9 Recall the marginal willingness to pay (equation (11)) is presented as follows: MWTPk = [∂U/∂xk] / [−∂U/∂p] =

βk (−βp)
−1

, where p is defined as the additional electricity expenditure (in log) (see Footnote 6 for discussing the pro-
cedure of estimating the additional electricity expenditure in detail.) The estimated MWTP coefficients are presented
in Table A3 in the Appendix.
As p is defined as lnP , where P represents the additional electricity expenditure, we can compute the monetary

value of willingness to pay for a specific proposed policy k in a year as ∂P/∂xk = βk (−βp)
−1

P . We then compute

the monetary value of the willingness to pay for a specific proposed policy k in a year as ∂P/∂xk = βk (−βp)
−1

P ,
where p = lnP . To compute the additional payment for a specific policy per kWh instead of the total amount
per year, we divide the annual additional payment by the average annual consumption of electricity (ACE),

that is, βk (−βp)
−1

P/ACE, where the amount of P = $106.69 and ACE = 14979.44 kWh represent the av-
erage additional electricity expenditure according to the conjoint experiment and the annual average consump-
tion of electricity, respectively. For example, on average, respondents are willing to pay $0.0347 per kWh (i.e.,
MWTPweatherization × $106.69/14979.44 = 4.88× $106.69/14979.44) more to perform the weatherization of the elec-
tricity system, compared to $0.0273 more for increasing the renewable energy supply.
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6 Winter Storm Uri as a Natural Experiment

According to Equation (7) in Section 3.2, given a better-than-average past experience, an individ-
ual will trust the public authority to provide a level of the public good that meets the individual’s
expected standard. By contrast, an individual who had a worse-than-average experience will have a
lower valuation of the public authority and thus lower WTP. Here, an individual’s past experience is
represented by outage length during Winter Storm Uri. Given the unique structure of the dataset,
where the number of hours without power is a continuous variable with some individuals not experi-
encing any power outages and other experiencing multiple days without power, we investigate three
discrete levels for the empirical analysis: those who experienced longer power outages (above the
average of 46.24 hours), those who experienced shorter power outages (below the average), and those
who did not experience power outages.

As shown in Figure 1, the distribution of power outages does not exhibit a specific spatial pattern
or clustering in particular regions. The impact of the Uri storm on Texas’ electric grid, leading
to outages varying by region and time, appears almost random, which we leverage as a natural
experiment.

6.1 Identification Strategy - Balance Tests

To validate the identification strategy, we perform several balance tests on 16 household character-
istics to ensure that, all else being equal, the length of power outages is the primary factor affecting
subjects’ experiences. These characteristics fall into the following categories: (1) demographic (fe-
male, white, Black, Hispanic); (2) socioeconomic (income, college education, home ownership, marital
status, and having children under 18 ); (3) political (Democrat, Republican, liberal, and conservative);
and (4) behavioral (risk aversion and electricity consumption).

Figure 4(a) shows whether there is a systematic association between the demographic, socioeco-
nomic, political, and behavioral traits of the respondents and their experiences with power outages
during the winter storm. The figure displays p-values for the null hypothesis that the means of the
16 covariates are equal for both groups of households – those that experienced power outages and
those that did not. The dashed vertical line denotes a statistically significant p-value smaller than
0.05. We can see that none of the p-values for the mean equality tests for these 16 covariates is lower
than a 5% significance level. suggesting that the assignment to either group is considered random.
This means that the distribution of the 16 factors for the households that experienced power outages
is not significantly different from those for households that did not.

Similarly, Figure 4(b) presents the p-values among the covariates of different groups: red dots
for comparisons between respondents who did not experience outages and those who experienced
shorter outages, blue dots for comparisons between those who did not experience outages and those
who experienced longer than average outages, and yellow dots for comparisons between the shorter
and longer outages groups. Consistent with Figure 4 (a), none of the covariates is statistically different
between the groups without interruption and the longest interruption or between the groups without
interruption and the longest interruption.10

10Table A1 in the appendix shows in detail the distribution of the covariates analyzed in this section by group.
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in length hour by hour from February 10 to February 19, being February 16, the day with most customers a↵ected.
The map below (Figure 1) shows the survey respondents’ average hours without power by ZIP codes in Texas. The
distribution of hours does not appear to follow a spatial pattern or be clustered in specific regions.

The e↵ects of Uri on the electric grid of Texas caused outages that varied by region and by time as if they were
random. Because of these reasons, the quasi-experimental design is used as leverage to understand the willingness to
pay. A balance test is proposed as evidence of the quasi-natural experiment, which shows, holding everything else
constant, that the length of power outages seems to be the one factor a↵ecting subjects’ experiences. Due to the unique
structure of the dataset, where the number of hours without power is a continuous variable, we are able to investigate
three discrete levels to complete the empirical analysis: Those who experienced longer power outages (above the
average), those who experienced shorter power outages (below the average) and those who did not experience power
outages.

For the identification strategy to be valid, individuals who experienced shorter or longer outages should not be sys-
tematically di↵erent in their characteristics from the group who experienced no outages. Figure 5 addresses systematic
di↵erences among these groups. Figure 5a shows whether a respondent who reported having experienced outages dur-
ing the winter storm is not systematically associated with personal and demographic characteristics. Specifically, the
figure reports p-values for the sharp null hypothesis that experiencing outages is not associated with the distribution
of 16 covariates. The dashed vertical line denotes a statistically significant p-value smaller than 0.05. Consistent with
the claim that assignment to either group was randomly assigned, the 16 covariates are not statistically significant.

Figure 5b presents in red p-values among the set of covariates between the group of respondents who did not
experience outages with those who experienced shorter outages. Blue dots show the p-values on the covariates between
those who did not experience outages and those who went through longer-than-average outages. Finally, yellow dots
present the p-values between the shorter and the longer outage groups. Consistently, with Figure 5a, all the covariates
are not statistically di↵erent between the no outage and the longer outage groups comparison or between the shorter
and longer outage group comparison. Furthermore, all the 16 covariates show to be not statistically significant between
the no outage and the shorter outage group.10

Figure 5: Balance Checks for Demographic Variables between Households With and Without Outages
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10Table A1 in the appendix shows in detail the distribution of the covariates analyzed in this section by group.
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10Table A1 in the appendix shows in detail the distribution of the covariates analyzed in this section by group.
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(a) Affected vs. Non-affected (b) Non-affected vs. Shorter/Longer Outages

Figure 4: Balance Checks for Demographic Variables Across Household Types

6.2 Marginal Willingness to Pay by Past Experience of Power Outages

Table 4 shows the results of the regression analysis for the three different groups: households that
had no outages (first column), households with shorter-than-average outages (second column), and
households experiencing longer-than-average outages (third column). The analysis indicates a con-
sistent pattern of preferences across all groups. Respondents, in general, prefer lower electricity costs
and shorter power outages, which is in line with the findings of the baseline model in Table 3. This
widespread dislike for higher costs and longer disruptions of the electricity supply holds regardless of
individuals’ outage experiences during Winter Storm Uri. Additionally, the positive and significant
coefficients for policy attributes across all subsamples indicate a broad willingness to pay more for
policies designed to improve the resilience of the Texas electric grid against severe weather, as long
as the associated costs and potential outages do not increase.

However, conducting likelihood ratio (LR) tests to compare the estimates for the different groups,
we find significant differences in policy preferences andWTP. Specifically, the estimates for households
without power outages are significantly different from estimates for households with shorter-than-
average outages at the 1% level. The LR test also shows a significant difference between households
without outages and those with longer-than-average outages. These results suggest that while the
general preference for lower costs and shorter outages is consistent, the magnitude of willingness to
pay for grid protection policies varies significantly depending on the household’s prior experience
with outages. The estimated WTP for three of the policies is higher for respondents who experienced
shorter-than-average power outages compared to the other two groups. The only exception is the
policy of increasing renewable energy supply, for which the WTP is highest among individuals who
did not experience any outages. For the policy of maintaining a minimum reserve capacity, the WTP
of those who experienced shorter-than-average outages is almost three times as large in comparison
to those who experienced longer-than-average outages.

Figures 5 and 6 show how people’s experiences with power outages during Winter Storm Uri have
influenced their support for the different policies and their marginal willingness to pay (in cents per
kWh). The results presented in Figure 5 are calculated based on the estimated coefficients of MWTP
for different policies, as estimated in Table 4.11 These calculations follow a similar method outlined
in equation (11) in Section 5.

11See Table A4 for the tests of coefficient equality across three types of households.
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Table 4: Mixed Logit Estimations on Willingness to Pay Across Three Types of Households

Households with Households with
Households without outages shorter than outages longer than
power outage average average

Variable Coefficient Std. Err. Coefficient Std. Err. Coefficient Std. Err.
Change in electricity expenditure (in log) -0.3873** 0.109 -0.2985*** 0.082 -0.8974*** 0.292

Derived standard deviations 0.4094 0.193 0.4260 0.173 1.3064 0.505
Hours of rolling blackouts/ intermittent service -1.5506*** 0.361 -0.9108*** 0.177 -1.5090*** 0.331

Derived standard deviations 2.0156 0.559 1.1739 0.309 1.8162 0.475
Policy response/ investment

Merge the Texas electrical grid with one of
the two national grids 1.0291*** 0.261 1.1546*** 0.205 2.2741*** 0.408
Require the winterization/ weatherization of
the electricity system 2.1733*** 0.345 1.8556*** 0.252 2.6129*** 0.419
Maintain a minimum reserve capacity 1.7222*** 0.322 1.4149*** 0.223 1.5058*** 0.332
Increase the renewable energy supply 2.2414*** 0.353 1.1322*** 0.206 2.0478*** 0.391

Log simulated-likelihood -1046.5429 -1232.3041 -1043.0159
Number of observations 3,888 4,264 3,848

Likelihood ratio test for the equality of two models
24.35
(p-value = 0.0000)

31.41
(p-value = 0.0000)

Notes: ∗ 10% significance level; ∗∗ 5% significance level; and ∗∗∗ 1% significance level, two-tailed tests.
Households without power outage if baseline model for the LR tests.
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Figure 5: Estimated Marginal Willingness to Pay by Outage Length

In the left panel of Figure 5, we compare the MWTP coefficients between households that did
not experience any power outages during Winter Storm Uri (in red) and those that experienced
shorter-than-average outages (in orange). We find that the coefficients are not statistically different
between the two groups. This suggests that both groups have a similar willingness to pay for policies
aimed at improving grid reliability, regardless of whether they experienced any power outages or
only shorter-than-average outages. For example, policies related to rolling blackouts and merging the
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Texas electrical grid with a national grid show negligible differences in WTP. This indicates that the
experience of shorter outages is similar to the willingness to invest in these policies.

The right panel of Figure 5 compares households that did not experience any power outages (in
red) and those with longer-than-average outages (in blue). We observed significant differences in the
MWTP coefficients for certain policies. For example, MWTP for policies that involve rolling blackouts
exhibited a notable difference, with households that endured longer outages significantly less willing
to pay for this policy. This suggests that more severe outages experience decreased support for
policies involving intermittent services, possibly due to greater dissatisfaction with the reliability of
such measures. Similarly, the MWTP for the policy that requires winterization and weatherization
of the electricity system is significantly lower among households that experienced longer outages
compared to those without outages, which may reflect reduced trust in the effectiveness of such
policies among those who suffered more during the storm. However, the willingness to pay for the
merging of the Texas grid with a national grid does not show a significant difference between the two
groups (p-value = 0.94), indicating a shared level of support for this broader infrastructure solution,
regardless of outage experience.

The willingness to pay to maintain a minimum reserve capacity also differs significantly based on
past outage experiences. Households that have experienced longer outages are less willing to pay for
this policy than those without outages. This difference emphasizes the impact of extended power
loss on the perceived value of ensuring minimum reserve capacity, possibly due to skepticism about
its effectiveness in preventing future outages. These findings highlight the importance of considering
past outage experiences when evaluating public support for energy policies, as these experiences
significantly influence the perceived value and effectiveness of potential interventions.

Similarly to Figure 3(b) in Section 5, we have presented a visual comparison of the MWTP for
12 hours of rolling blackouts or intermittent services and four key policy proposals across the three
subsample groups.12 Figure 6 complements the findings in Figure 5 and provides a more detailed
view of how different outage experiences influence the WTP for various energy policies. We find
that households that did not experience power outages consistently demonstrate the highest WTP
in all policies. They are willing to pay 5.228 cents more per kWh for 12 hours of rolling blackouts
and express strong support for policy interventions, with WTP amount ranging from 1.892 cents per
kWh for merging the Texas grid with a national grid to 4.121 cents per kWh for increasing renewable
energy supply. The relatively high WTP of the no outage group reflects a proactive attitude towards
preventing future outages and investing in preventive measures.

Among those that experienced power outages, households that experience shorter-than-average
power outages have slightly lower WTP values, ranging from 3.985 cents per kWh for rolling black-
outs, and 2.701 to 4.427 cents per kWh for policy proposals. The highest WTP is for requiring
winterization/weatherization of the electricity system (4.427 cents per kWh), indicating a strong
preference for measures that directly address the causes of their outage experience. By contrast,
households that experienced longer-than-average power outages have the lowest WTP across all cat-
egories. They are only willing to pay 2.196 cents per kWh for rolling blackouts, and their WTP
for policy proposals ranges from 1.201 to 2.079 cents per kWh. As outlined in Section 3, we can
understand this lower WTP as likely resulting from reduced trust in the public authority and thus
in the effectiveness of the proposed policies. Following their worse-than-average experience, they are
more hesitant, showing skepticism about the potential benefits of these policies and a reluctance to
invest more in a system that failed them during the storm.

We also perform a battery of robustness checks to ensure that our results are not driven by specific
locations or electricity utilities. We first estimate the WTP for different groups of households by

12See footnote 9 for the discussion on the MWTP calculation.
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Figure 6: Marginal willingness to pay across policy investment (in dollars per kWh)

removing one region from the sample one at a time. We consider the top three counties with the largest
GDP: Harris County, Dallas County, and Travis County.13 Panel A in Table A5 in the appendix
shows that the results of the estimated WTP in the sample without households living in Harris are
generally similar to our baseline results. We find that households that did not experience power
outages and those with shorter-than-average outages are willing to pay more for all different policy
options than those experiencing longer-than-average power outages. These results are consistent in
other subsample estimations where households in Dallas (panel B) and those in Travis (panel C) are
removed from the sample.

Finally, we explore any possible heterogeneity of the WTP for respondents subscribing to services
from different transmission and distribution utilities (TDUs), which may not provide identical quality
of services. In Texas, Oncor is the largest TDU, supplying electricity to over 10 million residential and
commercial consumers. Its service covers over 400 towns and cities, including Dallas, Fort Worth,
Odessa, Killeen, Tyler, Wichita Falls, and Waco. The second largest electric utility in Texas is
CenterPoint Energy. It delivers electricity to the Greater Houston area and surrounding locations.
We perform a similar analysis as above by removing Oncor or CenterPoint Energy from the sample.
The estimated results are presented in panels A and B of Table A6 in the appendix. We find that the
results remain robust and similar to our previous results. In panel C, we also remove the municipal
TDUs from the sample and find similar results, namely, that households with outages longer than
average are less willing to pay more to reduce the duration of future blackouts or for policy responses.

7 Explaining Differences in WTP

In Section 3 we presented a theoretical framework aimed at explaining the relationship between
outage experience and individuals’ willingness to pay for improvements to the electric system. The

13The county with the highest GDP in Texas is Harris County ($359.65 million), followed by Dallas County ($239,7
million), and Travis County ($115.79 million). See BEA (2021).
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framework is rooted in the public good features of having access to reliable electricity. In the previous
section, we found systematic differences in the willingness to pay for policies aimed at making the
Texas grid more reliable and resilient to extreme weather events, natural disasters, and other potential
shocks to the supply of electricity to Texas households. Those who have experienced longer outages
were less willing to pay more for the menu of policy changes presented in the conjoint experiment.

The severe impact of the storm on the Texas grid is likely to highlight the system’s vulnerabilities
to all Texans, leading to increased demand for policy interventions. Those who experienced no
or shorter blackouts during Winter Storm Uri are more likely to have a positive perception of the
electric system’s reliability and resiliency to shocks. On the other hand, those who experienced long
outages are more likely to lose faith in the electricity grid’s reliability and be less willing to support
policies aimed at improving the system. Additionally, individuals’ past experiences could affect their
perceptions of the government and the provider’s ability to ensure reliable access to electricity.

To further probe this mechanism, we analyze a series of responses to questions about who is
responsible for the electric system’s failure during the winter storm and who should pay for the
investments needed to secure access to electricity during severe weather events and natural disasters.
We find that, consistent with our expectations, those who experienced longer than average outages
during Winter Storm Uri are more likely to blame electricity producers, the government, and lack
of oversight as the culprits for the failures of the system than respondents who experienced shorter
outages or no outages at all.14
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(a) Households without power outages vs. 
those with outages shorter than average

(b) Households without power outages vs. 
those with outages longer than average

Figure 7: Perceived responsibility of power outages

Figure 7 shows the percentage of respondents who attribute blame for the power outage to Severe
Weather, the Lack of Weatherization of Power Generators, the Lack of Weatherization of Natural
Gas Equipment, and the Lack of Oversight over Power-Generation plants. Figure 7(a) presents the
comparison between the group that did not experience any outage and the group that experienced
an outage shorter than the average. There is no statistical difference between these two groups. In
contrast, Figure 7(b) shows significant differences between the group without outages and the group
that experienced an outage longer than average. We can see that people who experienced longer

14The question in the survey read: “From what you’ve read or heard, which of the following do you believe are
responsible for the electricity grid failure during the winter storm this past February? Select all that apply”. The
answer options were: Severe weather; the independence of Texas’ electric grid from the nation’s two other grids; lack
of weatherization or winterization of power generators; lack of weatherization or winterization of natural gas industry
equipment; reliance on renewable energy; and lack of oversight over power-generation plants.
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outages are more likely to blame companies (lack of weatherization of power generators and lack of
weatherization of natural gas equipment) and the government (lack of oversight over power-generation
plants) than those who did not experience any power outages during the storm.

We also find that respondents across Texas who experienced longer outages would prefer others to
pay for the extra costs from the proposed policies to the electric grid, particularly energy producers.15

Individuals who experienced longer outages are more likely to think that the energy producers should
pay to implement the policies. While 51.6% of the respondents in the group that experienced longer
than average outages responded that the energy producers should pay for the policy changes, just
45% of respondents in the group experiencing shorter outages agreed with that statement (p-value
= 0.0377).

8 Conclusion

The disruptions caused by Winter Storm Uri in Texas provided a unique opportunity to study how
individuals’ experiences during a natural disaster shape their willingness to pay for more reliable
electricity services. We conducted a choice experiment of policy interventions aimed at improving
the reliability of electricity services embedded in a representative survey of Texas residents after 2021
Winter Storm Uri. Our baseline results show that people generally prefer lower electricity costs and
shorter power outages. While this is not surprising, given that affordability and reliability are top
concerns for consumers, respondents are also willing to bear additional costs to support policies that
would enhance the grid’s ability to withstand extreme weather events. This willingness to invest in
grid improvements demonstrates the public’s strong preference for a more resilient system capable of
withstanding future disruptions and their willingness to share some of the costs of such investments.

Moreover, the ‘as-if’ random assignment of varying outage lengths across different households
and regions allowed us to investigate how past experiences shape individuals’ WTP. We find that
households that experienced longer power outages during the storm are less willing to pay for grid
protection policies compared to those who had shorter outages or no outages at all. We argue that
prolonged outages eroded trust (lower valuation) in policymakers’ and energy providers’ ability to
deliver on promises of a more resilient electricity system, thereby making such individuals less willing
to support and fund additional investments. Conversely, those with shorter outages exhibited greater
WTP, while those unaffected by the storm were most supportive of preventative measures, such as
increasing renewable energy supply. Interestingly, those who did not experience any outages are the
most willing to pay for policies, such as increasing renewable energy supply.

Our findings offer important policy implications for policymakers in Texas and other areas facing
similar challenges with electricity reliability. First and foremost, the results underscore the impor-
tance of recognizing past outage experiences on public support for grid improvements. Policymakers
should recognize that households who experienced longer outages are more reluctant to support fur-
ther investments unless they can be convinced that these policies will prevent similar failures in the
future. Recognizing that households who experienced longer outages are more likely to be skepti-
cal of proposed solutions, policymakers may need to consider targeted policies and communication
strategies to address their concerns, such as through prioritizing investments in areas that were most
affected by the storm. In addition, to increase public support for grid investments, policymakers
should focus on rebuilding trust through enhanced communication with the public about the specific

15The question about who should pay for the policy, the exact text was: In your opinion, how do you think policies
proposed to protect the Texas electric grid from effects of severe weather should be paid for? The answer options were:
Paid for by sales taxes; paid for by property taxes; paid for by consumers through their electricity bill; paid for by
energy producers; and do not enact the policies to protect the Texas electric grid from severe weather.
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steps being taken to improve grid reliability and by demonstrating a commitment to addressing past
shortcomings and holding energy providers accountable.
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Baumgärtner, Stefan, Moritz A Drupp, Jasper N Meya, Jan M Munz, and Martin F
Quaas. 2017. “Income inequality and willingness to pay for environmental public goods.” Journal
of Environmental Economics and Management, 85: 35–61. (Cited on 2)

Bolduc, Moshe Ben-AkiWand Denis, and Denis Ben-AkiWand. 1996. “Multinomial pro-
bit with a logit kernel and a general parametric specification of the covariatice structure.” Mas-
sachusetts Institute of Technology: Cambridge Mass. (Cited on 9)

Brainard, William C., and Jr. Dolbear, F. Trenery. 1967. “The possibility of oversupply of
local public goods.” Journal of Political Economy, 75: 86–92. (Cited on 1, 4)

Cai, Yongxin, Iraj Deilami, and Kenneth Train. 1998. “Customer retention in a competitive
power market: Analysis of a ’double-bounded plus follow-ups’ questionnaire.” The Energy Journal,
56(2): 191–215. (Cited on 7)

Carlsson, Fredrik, and Peter Martinsson. 2008. “Does it matter when a power outage oc-
curs?—A choice experiment study on the willingness to pay to avoid power outages.” Energy
economics, 30(3): 1232–1245. (Cited on 2, 8)

Cohen, Jed, Klaus Moeltner, Johannes Reichl, and Michael Schmidthaler. 2018. “Effect
of global warming on willingness to pay for uninterrupted electricity supply in European nations.”
Nature Energy, 3(1): 37–45. (Cited on 2, 3)

Flores, Nicholas E., and Richard T. Carson. 1997. “The relationship between the income elas-
ticities of demand and willingness to pay.” Journal of Environmental Economics and Management,
33(3): 287–295. (Cited on 2)

Goett, Andrew A. 1998. “Estimating customer preference for new pricing products. Final Report
(EPRI-TR–111483), Palo Alto.” Electric Power Research Institute. (Cited on 7)

21



Goett, Andrew A., Kathleen Hudson, and Kenneth E. Train. 2000. “Customers’ choice
among retail energy suppliers: The willingness-to-pay for service attributes.” The Energy Journal,
21(4). (Cited on 2)

Greene, W.H. 2011. “Econometric analysis ([7. sup. th] edition).” (Cited on 9)

Hanley, Nick, Douglas MacMillan, Robert E. Wright, Craig Bullock, Ian Simpson, Dave
Parsisson, and Bob Crabtree. 1998. “Contingent Valuation Versus Choice Experiments: Es-
timating the Benefits of Environmentally Sensitive Areas in Scotland.” Journal of Agricultural
Economics, 49(1): 1–15. (Cited on 7)

Hensher, David A, Nina Shore, and Kenneth Train. 2014. “Willingness to pay for residential
electricity supply quality and reliability.” Applied energy, 115: 280–292. (Cited on 2)

Horowitz, John K, and Kenneth E McConnell. 2003. “Willingness to accept, willingness to
pay and the income effect.” Journal of economic behavior & organization, 51(4): 537–545. (Cited
on 2)

Huang, Chung L. 1993. “Simultaneous-equation model for estimating consumer risk percep-
tions, attitudes, and willingness-to-pay for residue-free produce.” Journal of Consumer Affairs,
27(2): 377–396. (Cited on 2)

Kim, Hyo-Jin, Sung-Min Kim, and Seung-Hoon Yoo. 2019. “Economic Value of Improv-
ing Natural Gas Supply Reliability for Residential Consumers in South Korea.” Sustainability,
11(2): 515. (Cited on 2)
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9 Appendix

Tables

Table A1: Descriptive Statistics by Treatment Group (Balance Check)

Full Sample No Outage
No. Mean S.D. No. Mean S.D.

Owner 1500 0.61 0.49 486 0.63 0.48
E.C. 1500 14.97 8.49 486 15.23 8.51
Married 1500 0.52 0.49 486 0.54 0.50
Income 1340 77.11 77.88 436 75.52 68.95
Democrat 1500 0.37 0.48 486 0.37 0.48
Republican 1500 0.22 0.41 486 0.21 0.40
Female 1500 0.56 0.49 486 0.55 0.50
White 1500 0.46 0.49 486 0.50 0.50
Black 1500 0.09 0.29 486 0.08 0.28
Hispanic 1500 0.37 0.48 486 0.37 0.48
College 1500 0.36 0.48 486 0.35 0.48
Children 1500 0.27 0.44 486 0.28 0.45
Liberal 1500 0.31 0.46 486 0.32 0.47
Conservative 1500 0.30 0.45 486 0.31 0.46
Risk Aversion 1 1,141 0.27 0.45 363 0.25 0.44
Risk Aversion 2 1,499 0.24 0.43 486 0.23 0.42

Shorter outages Longer outages
No. Mean S.D. No. Mean S.D.

Owner 533 0.62 0.49 481 0.59 0.49
E.C. 533 15.22 8.58 481 14.44 8.38
Married 533 0.54 0.50 481 0.51 0.50
Income 472 77.90 82.91 432 77.84 80.80
Democrat 533 0.37 0.48 481 0.37 0.48
Republican 533 0.24 0.43 481 0.24 0.43
Female 533 0.60 0.49 481 0.55 0.50
White 533 0.45 0.50 481 0.46 0.50
Black 533 0.11 0.32 481 0.10 0.29
Hispanic 533 0.37 0.48 481 0.38 0.49
College 533 0.35 0.48 481 0.40 0.49
Children 533 0.29 0.45 481 0.27 0.44
Liberal 533 0.32 0.47 481 0.31 0.46
Conservative 533 0.31 0.46 481 0.29 0.45
Risk Aversion 1 407 0.30 0.46 371 0.26 0.44
Risk Aversion 2 533 0.24 0.43 480 0.25 0.43

Notes: E.C. stands for electricity consumption (in 1,000 kWh).
Income is measured in $1,000.
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Table A2: Policy Preferences on Protecting the Texas Electrical Grid from Severe Weather

Baseline
Variable Coefficient Std. Err.
Cost

1 cent more per kWh -0.2363*** 0.067
2 cents more per kWh -0.4511*** 0.069
4 cents more per kWh -0.9139*** 0.071
6 cents more per kWh -1.3240*** 0.078

Outage duration
Rolling blackouts/ intermittent service:

On and off for up to 2 hours -0.7659*** 0.062
On and off for up to 12 hours -1.3373*** 0.067
For more than 12 hours -1.8117*** 0.079

Policy response/ investment
Merge the Texas electrical grid with
one of the two national grids 0.7527*** 0.077
Require the winterization/
weatherization of the electricity system 1.2141*** 0.075
Maintain a minimum reserve capacity 0.7799*** 0.069
Increase the renewable energy supply 0.9268*** 0.076

Log simulated-likelihood -3302.2572
Number of Observations 12,000

Notes: ∗ 10% significance level; ∗∗ 5% significance level; and ∗∗∗ 1%
significance level, two-tailed tests.
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Table A3: Marginal Willingness to Pay - Baseline and Subsamples

Baseline
Households without
Power Outage

Households with
Shorter than Average
Power Outage

Households with
Longer than Average
Power Outage

Hours of rolling blackouts/
intermittent service

-2.9590*** -4.0030*** -3.0512*** -1.6814***

(0.328) (0.732) (0.580) (0.380)
Merge the Texas electrical grid with
one of the two national grids

3.1715*** 2.6569*** 3.8678*** 2.5529***

(0.459) (0.748) (0.953) (0.604)
Require the winterization/
weatherization of the electricity system

4.8853*** 5.6106*** 6.2161*** 2.9183***

(0.646) (1.2070 (1.348) (0.704)
Maintain a minimum reserve capacity 3.4346*** 4.4461*** 4.7396*** 1.6857***

(0.483) (0.994) (1.084) (0.462)
Increase the renewable energy supply 3.8364*** 5.7863*** 3.7928*** 2.2762***

(0.526) (01.241) (0.921) (0.546)
Number of observations 12,000 3,888 4,264 3,848

Notes: ∗ 10% significance level; ∗∗ 5% significance level; and ∗∗∗ 1% significance level, two-tailed tests.
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Table A4: Equality Tests for Marginal Willingness to Pay Across Three Types of Households

NO Outages LONG Outages Coefficient Equality
Coef Std Error Coef Std Error Chi Squared p-value

Hours of rolling blackouts
intermittent service

-4.0030*** [0.732] -1.6814*** [0.380] 5.65** 0.02

Merge the Texas electrical
grid with one of the two national grids

2.6569*** [0.748] 2.5529*** [0.604] 0.01 0.94

Require the winterization /
weatherization of the electricity system

5.6106*** [1.207] 2.9183*** [0.704] 2.8* 0.09

Maintain a minimum reserve
capacity

4.4461*** [0.994] 1.6857*** [0.462] 5.29** 0.02

Increase the renewable energy
supply

5.7863*** [1.241] 2.2762*** [0.546] 5.6** 0.02

SHORT Outages LONG Outages Coefficient Equality
Coef Std Error Coef Std Error Chi Squared p-value

Hours of rolling blackouts
intermittent service

-3.0512*** [0.580] -1.6814*** [0.380] 3.66* 0.0556

Merge the Texas electrical
grid with one of the two national grids

3.8678*** [0.953] 2.5529*** [0.604] 1.25 0.2633

Require the winterization /
weatherization of the electricity system

6.2161*** [1.348] 2.9183*** [0.704] 4.56** 0.0328

Maintain a minimum reserve
capacity

4.7396*** [1.084] 1.6857*** [0.462] 6.62** 0.0101

Increase the renewable energy
supply

3.7928*** [0.921] 2.2762*** [0.546] 1.89 0.1697

NO Outages SHORT Outages Coefficient Equality
Coef Std Error Coef Std Error Chi Squared p-value

Hours of rolling blackouts
intermittent service

-4.0030*** [0.732] -3.0512*** [0.580] 0.96 0.33

Merge the Texas electrical
grid with one of the two national grids

2.6569*** [0.748] 3.8678*** [0.953] 0.99 0.32

Require the winterization /
weatherization of the electricity system

5.6106*** [1.207] 6.2161*** [1.348] 0.11 0.74

Maintain a minimum reserve
capacity

4.4461*** [0.994] 4.7396*** [1.084] 0.04 0.84

Increase the renewable energy
supply

5.7863*** [1.241] 3.7928*** [0.921] 1.6 0.21
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Table A5: Robustness Check on Marginal Willingness to Pay - Subregion Regressions

Baseline
Households
without
power outage

Households
shorter than average
power outages

Households with
longer than average
power outages

A. Removing Harris from the sample
Hours of rolling blackouts/ intermittent service -3.1325*** -3.9129*** -3.1479*** -2.0979***

(0.359) (0.709) (0.642) (0.721)
Policy response/ investment

Merge the Texas electrical grid with one of the two national grids 3.2255*** 2.4592*** 3.9258*** 3.1526***
(0.494) (0.715) (1.030) (1.079)

Require the winterization/ weatherization of the electricity system 5.3262*** 5.2634*** 7.1011*** 3.7354***
(0.721) (1.150) (1.593) (1.328)

Maintain a minimum reserve capacity 3.7637*** 4.402202 4.9385*** 2.1208***
(0.548) (0.988) (1.204) (0.844)

Increase the renewable energy supply 4.2195*** 5.567897 3.8653*** 3.0351***
(0.592) (1.203) (1.005) (1.057)

Number of observations 10,024 3,768 3,440 2,816

B. Removing Dallas from the sample
Hours of rolling blackouts/ intermittent service -2.8881*** -3.6754*** -2.9278*** -1.8261***

(0.323) (0.693) (0.572) (0.422)
Policy response/ investment

Merge the Texas electrical grid with one of the two national grids 3.2669*** 2.5223*** 4.0070*** 2.8415***
(0.470) (0.714) (1.008) (0.659)

Require the winterization/weatherization of the electricity system 5.0353*** 5.2811*** 6.3353*** 3.2176***
(0.652) (1.187) (1.376) (0.762)

Maintain a minimum reserve capacity 3.5348*** 3.9108*** 4.9011*** 1.9906***
(0.491) (0.935) (1.119) (0.522)

Increase the renewable energy supply 3.8120*** 4.9543*** 3.8724*** 2.5079***
(0.523) (1.183) (0.954) (0.590)

Number of observations 11,064 3,544 3,944 3,576

C. Removing Travis from the sample
Hours of rolling blackouts/intermittent service -3.0137*** -4.2176*** -3.2283*** -1.4729***

(0.348) (0.852) (0.618) (0.424)
Policy response/investment

Merge the Texas electrical grid with one of the two national grids 2.9808*** 2.2674*** 4.0387*** 2.1777***
(0.465) (0.736) (1.005) (0.622)

Require the winterization/weatherization of the electricity system 4.7490*** 5.1713*** 6.7272*** 2.4954***
(0.668) (1.234) (1.443) (0.726)

Maintain a minimum reserve capacity 3.4420*** 4.3492*** 5.1831*** 1.4055***
(0.507) (1.053) (1.165) (0.477)

Increase the renewable energy supply 3.6981*** 5.4831*** 4.0874*** 1.8885***
(0.538) (1.291) (1.001) (0.545)

Number of observations 11,184 3,656 4,008 3,520

Notes: ∗ 10% significance level; ∗∗ 5% significance level; and ∗∗∗ 1% significance level, two-tailed tests. Standard errors are in parentheses.
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Table A6: Robustness Check on Marginal Willingness to Pay - Subsamples of Electric Utilities

Baseline
Households
without power
outage

Households with
outages shorter
than average

Households with
outages longer
than average

A. Removing Oncor from the sample
Hours of rolling blackouts/ intermittent service -3.0364*** -5.9695*** -3.1701*** -1.8018***

(0.391) (1.576) (0.674) (0.447)
Policy response/ investment

Merge the Texas electrical grid with one of the two national grids 3.3368*** 3.5363*** 5.1329*** 2.4528***
(0.583) (1.260) (1.432) (0.570)

Require the winterization/weatherization of the electricity system 4.9695*** 8.1948*** 7.2509*** 2.5246***
(0.777) (2.094) (1.771) (0.615)

Maintain a minimum reserve capacity 3.7055*** 6.4665*** 6.0368*** 1.7535***
(0.621) (1.869) (1.530) (0.459)

Increase the renewable energy supply 3.7489*** 7.0267*** 4.6524*** 2.0532***
(0.630) (1.980) (1.281) (0.508)

Number of observations 7,832 2,168 2,872 2,792

B. Removing Centerpoint from the sample
Hours of rolling blackouts/ intermittent service -3.2086*** -4.1417*** -3.0726*** -2.0668***

(0.377) (0.771) (0.664) (0.657)
Policy response/investment

Merge the Texas electrical grid with one of the two national grids 3.2507*** 2.3710*** 3.6622*** 3.4434***
(0.517) (0.727) (1.022) (1.095)

Require the winterization/weatherization of the electricity system 5.3192*** 5.1449*** 6.7236*** 3.8973***
(0.759) (1.197) (1.619) (1.293)

Maintain a minimum reserve capacity 3.7893*** 4.2317*** 4.7385*** 2.3273***
(0.575) (0.994) (1.242) (0.853)

Increase the renewable energy supply 4.3353*** 5.4420*** 3.6277*** 3.3506***
(0.629) (1.251) (1.001) (1.085)

Number of observations 9,424 3,648 3,128 2,648

C. Removing Muncipal from the sample
Hours of rolling blackouts/ intermittent service -2.7833*** -3.3729*** -3.2366*** -1.3341***

(0.361) (0.665) (0.642) (0.318)
Policy response/ investment

Merge the Texas electrical grid with one of the two national grids 2.7194*** 1.8916*** 3.8818*** 1.8314***
(0.469) (0.663) (0.986) (0.476)

Require the winterization/ weatherization of the electricity system 4.3094*** 4.3165*** 5.9156*** 2.3342***
(0.689) (1.107) (1.365) (0.601)

Maintain a minimum reserve capacity 3.0389*** 3.5474*** 4.4120*** 1.3254***
(0.510) (0.919) (1.074) (0.403)

Increase the renewable energy supply 3.4777*** 4.8233*** 3.8736*** 1.7056***
(0.570) (1.203) (1.011) (0.451)

Number of observations 9,936 3,264 3,488 3,184

Notes: ∗ 10% significance level; ∗∗ 5% significance level; and ∗∗∗ 1% significance level, two-tailed tests. Standard errors are in parentheses.
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Figures

Figure A1: An Example of the Conjoint Experiment
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Figure A2: Distribution matching
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